which in turn may be written in the form

$$\left[\frac{\partial}{\partial t} + (u \pm c_m) \frac{\partial}{\partial x}\right](u \pm c_m) = 0$$
(2.4)

Here c_m is the effective velocity of the sound defined by (1.2), and in the case of a conductive liquid we have $c = \sqrt{2gh}$, $v_a = b (gh / 2\pi\rho b_0)^{1/2}$. It will be seen from system (2.4) that magnitudes $u \pm c_m$ have constant values for points moving in the conductive liquid at velocities $u \pm c_m$, i.e. for points the motions of which are defined by Eq. $dx / dt = u \pm c_m$, while the related perturbations moving towards each other do not interact between themselves.

Thus, system (2.4) coincides with the differential equations of the adiabatic flow of a perfect gas with the adiabatic exponent k = 3. This feature makes possible the direct application to this problem of all of the gas-dynamical results related to motions free of shock wave generation.

BIBLIOGRAPHY

- Kaplan, S. A. and Staniukovich, K. P., Solution of equations of magnetogasdynamics for one-dimensional motion. Dokl. Akad. Nauk SSSR, Vol. 95, № 4, 1954.
- Staniukovich, K. P., Unsteady Motions of a Continuous Medium. M., Gostekhizdat, 1955.
- 3. Staniukovich, K. P. and Dzhusupov, K., Nonstationary discharge of gas in a constant gravitational field. Dokl. Akad. Nauk SSSR, Vol. 177, №4, 1967.
- Khristianovich, S. A., Mikhlin, S. G. and Devison, B. B., Certain New Problems of Continuous Media Mechanics. Pt. 1, Ch. III, M. -L., Izd. Akad. Nauk SSSR, 1938.
- Golitsyn, G. S., One-dimensional motions in magnetohydrodynamics. ZhETF, Vol. 35, №3, 1958.

Translated by J. J. D.

STABILIZATION OF A NONLINEAR CONTROL SYSTEM IN THE CRITICAL CASE OF A PAIR OF PURELY IMAGINARY ROOTS

PMM Vol. 32, №5, 1968, pp. 963-968 N. V. STOIANOV (Sofia) (Received May 28, 1968)

We consider the problem of stabilization of the steady motions of a nonlinear control system in the critical case of a pair of purely imaginary roots. We introduce a nonanalytic control in two critical variables and use the Liapunov's classical theory of stability of motion [1 and 2] together with the methods developed in [3].

1. Let us consider the controlled system

$$\frac{dx}{dt} = Ax + Bu + g(x, u) \tag{1.1}$$

where x denotes the (n + 2)-dimensional perturbation vector, u is the m-dimensional control vector which we shall assume to be unaffected by any disturbances, A and B are constant $(n + 2) \times (n + 2)$ and $(n + 2) \times m$ matrices, respectively, and g(x, u)

N. V. Stolanov

denote the terms of higher order of smallness in x and u.

If the unperturbed motion x=0 of the system (1, 1) does not become asymptotically stable when $u \equiv 0$, then we have a problem on stabilization, i.e. we require to find such a control u = u(x) which would make, when inserted into (1, 1), the unperturbed motion x = 0 asymptotically stable in the Liapunov sense.

Let us now consider the critical case of a pair of purely imaginary roots [2]. In this case [2 and 4] we can reduce the system (1, 1), using a certain nondegenerate linear transformation of variables x_i (i = 1, 2, ..., n + 2), to

$$\frac{d\xi}{dt} = -\lambda \eta + X \left(\xi, \eta, z, u\right), \qquad \frac{d\eta}{dt} = \lambda \xi + Y \left(\xi, \eta, z, u\right) \tag{1.2}$$

$$dz / dt = A_0 z + B_0 u + a\xi + b\eta + Z (\xi, \eta, z, u)$$
(1.3)

where ξ and η are scalar variables, z is an n-dimensional vector with components $z_{s,r}$ a and b are n-dimensional constant vectors, A_0 and B_0 are $n \times n$ and $n \times m$ constant matrices, Z_s denote the components of the vector function Z and X, Y and Z_s are analytic expressions defining the nonlinearities in ξ , η , z and u.

The stabilization problem for (1, 1) is equivalent to the same problem for the system (1.2) and (1.3). As we know [3], the system

$$lz / dt = A_0 z + B_0 u \tag{1.4}$$

(1.5)

is stabilizable and the following linear control can be constructed for it: u°

n

$$(z) = Pz$$

A constant $m \times n$ matrix P should be chosen so, that, on substituting (1, 5) into (1, 4), all eigenvalues μ_s of the resulting matrix

$$C = A_0 + B_0 P = \text{const} (C = (c_{ij}))$$

have negative real parts.

Let us consider the following continuous, nonanalytic control proposed by Krasovskii [4] for the system (1, 2) and (1, 3)

$$u (\xi, \eta, z) = Pz + w (\xi, \eta) \qquad (w = (w_1, \ldots, w_m))$$
(1.6)

$$w_{j}(\xi, \eta) = w_{j}^{(1)}(\xi, \eta) + w_{j}^{(2)}(\xi, \eta) + \ldots + w_{j}^{(\omega)}(\xi, \eta)$$
(1.7)

$$w_{j}^{(k)}(\xi, \eta) = \sum_{r=-1}^{j_{k}} \sum_{p+q-r=k} \alpha_{pq-r}^{(j)} \xi^{p} \eta^{q} \rho^{-r} \quad (k=1, 2, ..., \omega)$$
(1.8)

$$(\rho = \sqrt{\xi^2 + \eta^2}; p \ge 0, q \ge 0; a_{jk} \ge 0, \omega > 0 - \text{are all integers})$$

Functions of the form (1, 8) satisfy the estimate

$$\|w_{j}^{(l)}(\xi, \eta)\| \leq A_{j}^{l} \|\zeta\|^{k}, \quad \|\zeta\| = \sqrt{\xi^{2} + \eta^{2}}, \quad A_{j}^{k} = \text{const} > 0$$

which is characteristic for homogeneous, kth order forms.

Here and in the following, Expression w_j (0, 0) when used in connection with a function of the type (1.8), will denote $w_j(0, 0) = \lim_{\rho \to 0} w_j(\xi, \eta) = 0$

Choice of the constants $\alpha_{pq-r}^{(j)}$ and the integers w and a_{jk} depends on the form of the initial system (1.2) and (1.3) and on, whether or not it can be stabilized.

We shall show that, transforming to the noncritical variables z_s according to

$$z_s = y_s + \varkappa_s (\xi, \eta) \tag{1.9}$$

we can reach the state when the expansions of the right-hand sides of equations for the

986

Stabilization of a nonlinear control system

noncritical variables will, when $y_s = 0$, contain terms depending only on the critical variables ξ and η of degree greater than N - 1 (N > 1 is an integer).

We shall first define the functions \varkappa_s (ξ , η) as the formal solution of a system of equations containing partial derivatives

$$\frac{\partial x}{\partial \xi} \left[-\lambda \eta + \lambda'(\xi, \eta, \varkappa, u) \right] + \frac{\partial x}{\partial \eta} \left[\lambda \xi + \lambda'(\xi, \eta, \varkappa, u) \right] =$$
$$= A_0 \varkappa + B_0 u + a\xi + b\eta + Z(\xi, \eta, \varkappa, u)$$
(1.10)

where \varkappa is a *n*-dimensional vector with components \varkappa_s .

We shall seek a solution of this system in the form of formal series

$$x_{s}^{(k)}(\xi, \eta) = x_{s}^{(1)}(\xi, \eta) + x_{s}^{(2)}(\xi, \eta) + \dots \qquad (1.11)$$

where the functions $\kappa_{s}^{(h)}(\xi, \eta)$ are of the type (1, 8), i.e.

$$\kappa_{s}^{(k)}(\xi, \eta) = \sum_{r=-1}^{1} \sum_{p+q-r=k} a_{pq-r}^{(s)} \xi^{p} \eta^{q} \rho^{-r}, \quad (k=1, 2, ...)$$
(1.12)

Inserting (1, 11), (1, 12) and (1, 6)–(1, 8) into (1, 10) and comparing the v th order terms, i.e. terms for which p + q - r = v in the left- and right-hand sides of the resulting equations, we obtain the following system of equation defining the vector function x^{v}

$$\lambda\left(\xi\frac{\partial x^{(\nu)}}{\partial \eta} - \eta\frac{\partial x^{(\nu)}}{\partial \xi}\right) = Cx^{(\nu)} + \tau^{(\nu)}(\xi, \eta) \qquad (\nu \ge 1)$$
(1.13)

Here $\tau_s^{(\nu)}$ denote the components of the vector function $\tau^{(\nu)}$, which are also homogeneous, ν th degree functions of ξ and η of the type (1, 8). When $\nu = 1$, we have $\tau^{(1)} = a\xi + b\eta + B_0 \omega^{\nu}$. When $\nu > 1$, then the functions $\tau_s^{(\nu)}$ depend on the functions $\kappa_s^{(1)}$, $\kappa_s^{(2)}$,..., $\kappa_s^{(\nu-1)}$ (s = 1, 2, ..., n), and if $\kappa_s^{(1)}$ where $l < \nu$ are already computed, then the functions $\tau_s^{(\nu)}$ (ξ, η) will be completely defined.

Let us now separate the terms appearing in the functions $\varkappa_s^{(\nu)}(\xi, \eta)$ and $\tau_s^{(\nu)}(\xi, \eta)$ which are accompanied by the factors ρ^{-r} , and write them as

$$\mathbf{x}_{s}^{(\mathbf{v})} = \sum_{r=-1}^{b_{sv}} \mathbf{x}_{s}^{(\mathbf{v}+r)_{v}} \rho^{-r} , \qquad \tau_{s}^{(\mathbf{v})} = \sum_{r=-1}^{c_{sv}} \tau_{s}^{(\mathbf{v}+r)_{v}} \rho^{-r}$$
(1.14)

where $\kappa_s^{(\nu+r)_{\nu}}$ and $\tau_s^{(\nu+r)_{\nu}}$ are the $(\nu + r)$ -th order forms in ξ and η , while $\sigma_{s\nu} > 0$ are integers.

Inserting (1, 14) into (1, 13) and assuming that

$$\xi \frac{\partial \rho^{-r}}{\partial \eta} - \eta \frac{\partial \rho^{-r}}{\partial \xi} \equiv 0$$
 (1.15)

we obtain

$$\lambda \sum_{r=-1}^{h_{gv}} \rho^{-r} \left(\xi \frac{\partial \kappa_s^{(v+r)_v}}{\partial \eta} - \eta \frac{\partial \kappa_s^{(v+r)_v}}{\partial \xi} \right) = \sum_{r=-1}^{h_{gv}} \sum_{i=1}^n c_{si} \kappa_i^{(v+r)_v} \rho^{-r} + \sum_{r=-1}^{\sigma_{gv}} \tau_s^{(v+r)_v} \rho^{-r}$$
(1.16)

Constants b_{sy} are chosen as follows. We put in (1, 11) and (1, 16)

$$b_{1\nu} = b_{2\nu} = \dots = b_{n\nu} = \max \{\sigma_{1\nu}, \sigma_{2\nu}, \dots, \sigma_{n\nu}\}$$

and obtain the particular values for b_{xv} by comparing, in the left- and right-hand sides of (1, 16), the terms accompanied by the same factor ρ^{-r} . In this manner we obtain for the vector function $x^{(v+r)}v$,

$$\lambda \left(\xi \frac{\partial x^{(v+r)_{v}}}{\partial \eta} - \eta \frac{\partial x^{(v+r)_{v}}}{\partial \xi} \right) = C x^{(v+r)_{v}} + \tau^{(v+r)_{v}}$$
(1.17)

N. V. Stolanov

The above system is a particular case of the system (32) of [1], Section 30 (see also (39, 1) of [2], Section 39). By Liapunov theorem [1 and 2], the system (1, 17) has a unique solution for $x_a^{(v+r)}_v$, which can be obtained using the method of undetermined multipliers. This will also yield the linear algebraic systems for the coefficients $a_{pq-r}^{(s)}(p - r) = r = v$ of the form $x_s^{(v+r)}_v$, which shall not be given here,

Thus Eqs. (1, 17) make possible the cosecutive determination of the functions $\varkappa_s^{(\nu+r)_{\nu}}$ ($\nu = 1, 2...$) and hence of the function $\varkappa_s^{(k)}$ of Formula (1, 12).

Note 1.1. It can be shown that, if we put $\rho = \sqrt{\alpha \xi^2 + \beta \eta^2}$ (α and β are positive constants) into the control (1.6)-(1.8), then we must have $\alpha = \beta$.

Let us assume that the functions x_s (ξ , η) (1, 11) are already computed, i.e. are known up to the (N - 1)-th order

$$\varkappa_{s}(\xi, \eta) = \varkappa_{s}^{(1)}(\xi, \eta) + \varkappa_{s}^{(2)}(\xi, \eta) + \dots + \varkappa_{s}^{(N-1)}(\xi, \eta)$$
(1.18)

Inserting (1, 6)-(1, 8) into Eqs. (1, 2) and (1, 3) and transforming the result according to Formulas (1, 9) and (1, 18), we obtain

$$\frac{d\xi}{dt} = -\lambda\eta + \sum_{\sigma=2}^{N} X_{\sigma}(\xi, \eta) + \varphi_{1}(\xi, \eta, y), \quad \frac{d\eta}{dt} = \lambda\xi + \sum_{\sigma=2}^{N} Y_{\sigma}(\xi, \eta) + \varphi_{2}(\xi, \eta, y) \quad (1.19)$$

$$dy/dt = Cy + Z^*(\xi, \eta, y)$$
 (1.20)

Here the functions $\varphi_i(\xi, \eta, y)$ and the components of the vector function $Z^*(\xi, \eta, y)$ do not go below the second order of smallness in ξ , η and y_s .

Functions φ_i (ξ , η , 0) satisfy the Lipschitz condition with an infinitesimal constant in the estimate $|\varphi_i(\xi, \eta, 0)| \leq \beta_i ||\xi||^{N+1}$ ($\beta_i > 0$ are constants

By virtue of the transformation (1, 9) and (1, 18) the expansion of the components of Z^* ($\xi, \eta, 0$) begins with the terms of the order not less than N.

If these conditions hold, then the theorem 2.2 of [5] is valid, i.e. the problem of stability of the null solution of the system (1.19), (1.20) is equivalent to the problem of stability of the null solution of $\frac{d\xi}{dt} = -\lambda\eta + \sum_{q=1}^{N} X_{q}(\xi, \eta), \quad \frac{d\eta}{dt} = \lambda\xi + \sum_{q=2}^{N} Y_{q}(\xi, \eta)$

We note that the system (1, 21) can also be obtained by inserting the control (1, 6) - (1, 8) into (1, 2), replacing the components of the vector z in the resulting expression with the respective components of the vector x (1, 18), respectively, and terminating the result on the Nth order terms. Clearly, increasing N will not alter those of the terms of (1, 19) whose initial order was not greater than N. Therefore, when performing the computations, we should first put N = 2 and increase it only if necessary.

2. Let us consider the homogeneous *m*th degree functions $u^{(m)}$ and $v^{(m)}$ of the variables ξ and η , of the type (1.8)

$$u^{(m)}(\xi, \eta) = \sum_{r=-1}^{n} \sum_{p+q-r=m}^{n} c_{pq-r} \xi^{p} \eta^{q} \rho^{-r} \qquad (c_{pq-r} = \text{const}) \quad (2.1)$$

$$v^{(m)}(\xi, \eta) = \sum_{r=-1}^{r} \sum_{p+q-r=m} d_{pq-r} \xi^{p} \eta^{q} \rho^{-r} \qquad (d_{pq-r} = \text{const})$$
(2.2)

 $(\gamma \ge 0, m > 0 \text{ are integers})$

The problem which we shall now propose for the functions $u^{(m)}$ and $v^{(m)}$ will be analogous to the problem dealt with in [2]. Let the function $u^{(m)}$ be given. We require to find a function $v^{(m)}$ such, that its derivative with respect to time is, by virtue of the linear part of the system (1, 21), i.e. of Eqs.

$$d\xi / dt = -\lambda \eta, \qquad d\eta / dt = \lambda \xi \qquad (2.3)$$

equal to $u^{(m)}$.

The derivative of ρ^{-r} with respect to time is, by (2.3), identically equal to zero (see (1, 15)). It follows therefore, that we can treat ρ^{-r} as a parameter when differentiating $v^{(m)}$ given by (2.2). Collecting all terms containing the factor ρ^{-r} , we can write (2.1) and (2.2) as

$$u^{(m)} = \sum_{r=-1}^{r} u^{(m+r)} \rho^{-r}, \qquad v^{(m)} = \sum_{r=-1}^{r} v^{(m+r)}_{-r} \rho^{-r}$$
(2.4)

where $u_{-r}^{(m+r)}$ and $v_{-r}^{(m+r)}$ are the forms of (m+r)-th order in ξ and η , and where m+r can be either even or odd, depending on m and r.

We shall seek the function $v^{(m)}$ (2.2) satisfying Eq.

$$\lambda \left(\xi \frac{\partial v^{(m)}}{\partial \eta} - \eta \frac{\partial v^{(m)}}{\partial \xi}\right) = u^{(m)} + \sum_{r=-1}^{\gamma} G_{-r} (\xi^2 + \eta^2)^{1/2(m+r)} \rho^{-r}$$
(2.5)

where $u^{(m)}(2, 1)$ is given and where $G_{-r} = 0$ when m + r = 2k - 1, (k = 1, 2, ...).

Constants G_{-r} can be chosen so that (2, 5) will have a solution. Indeed, putting (2, 4) into (2, 5) and comparing the terms on both sides of the resulting expression accompanied by the factor ρ^{-r} , we obtain the following equations defining the forms $\Psi_{-r}^{(m+r)}$

$$\lambda \left(\xi \frac{\partial v_{-r}^{(m+r)}}{\partial \eta} - \eta \frac{\partial v_{-r}^{(m+r)}}{\partial \xi} \right) = u_{-r}^{(m+r)} \qquad (m+r=2k-1)$$
(2.6)

$$\lambda \left(\xi \frac{\partial v_{-r}^{(m+r)}}{\partial \eta} - \eta \frac{\partial v_{-r}^{(m+r)}}{\partial \xi} \right) = u_{-r}^{(m+r)} + G_{-r} \left(\xi^2 + \eta^2 \right)^{i/2(m+r)} \quad (m+r=2k)$$
(2.7)

Arguments analogous to those in [2] lead to the following formula for the computation of constants: $G_{n} = -\frac{1}{2} \int_{0}^{2\pi} \mu^{(m+r)}(F_{n}) d\theta \qquad (m+r-2h)$ (3.8)

$$-r = -\frac{1}{2\pi} \int_{0}^{r} u_{-r}^{(m+r)}(\xi, \eta) \Big|_{\substack{\xi = \cos \theta \\ \tau_{i} = \sin \theta}} d\theta, \qquad (m+r=2k)$$
(2.8)

3. We shall now investigate the stability of the reduced system (1, 21), writing it as

$$d\xi / dt = -\lambda \eta + X_{2}(\xi, \eta) + X_{3}(\xi, \eta) + ...$$

$$d\eta / dt = \lambda \xi + Y_{3}(\xi, \eta) + Y_{3}(\xi, \eta) + ... \qquad (3.1)$$

where X_k and Y_k represent the set of the k th order terms of the type (1, 8), i.e.

$$X_{k} = \sum_{r=-1}^{1^{n}} \sum_{p+q-r=k} l_{pq-r} \xi^{p} \eta^{q} \rho^{-r}, \quad Y_{k} = \sum_{r=-1}^{2^{n}} \sum_{p+q-r=k} h_{pq-r} \xi^{p} \eta^{q} \rho^{-r} \quad (3.2)$$

Here $k \ge 2$, $e_{1k} \ge 0$ and $e_{2k} \ge 0$ are integers. Coefficients l_{pq-r} and h_{pq-r} depend on the coefficients of the control (1, 6)-(1, 8); they will not, however, be given in full since they are cumbersome.

Let us consider the Liapunov function of the type

$$V = \xi^{a} + \eta^{a} + \varphi_{a}(\xi, \eta) + \varphi_{4}(\xi, \eta) + \dots \qquad (3.3)$$

Here the symbol $\varphi_k(\xi, \eta)$ denotes the kth order in ξ and η terms of the type (1, 8).

We shall try to choose them so, that the total differential of V is, by virtue of (3, 1), signdefinite, and we shall write this differential as

 $dV / dt = g_3(\xi, \eta) + g_4(\xi, \eta) + \dots \qquad (3.4)$

where $g_{k}(\xi, \eta)$ denote the set of the k th order terms

$$g_{\kappa}(\xi; \eta) \doteq \lambda \left(\xi \frac{\partial \varphi_{k}}{\partial \eta} - \eta \frac{\partial \varphi_{k}}{\partial \xi} \right) + \Phi^{(\lambda)}(\xi, \eta)$$
(3.5)

$$\mathbf{\Phi}^{(l)}(\boldsymbol{\xi}, \boldsymbol{\eta}) = 2\boldsymbol{\xi} \boldsymbol{X}_{k-1} + 2\boldsymbol{\eta} \boldsymbol{Y}_{k-1} + \sum_{i+j=l+1} \left(\boldsymbol{X}_j \frac{\partial \boldsymbol{\varphi}_i}{\partial \boldsymbol{\xi}} + \boldsymbol{Y}_j \frac{\partial \boldsymbol{\varphi}_i}{\partial \boldsymbol{\eta}} \right)$$
(3.6)

 $(k \geq 3, i \geq 3, j \geq 2)$

Clearly, if the functions ϕ_{k-1} are known, so will be the function $\Phi^{(k)}(\xi, \eta)$. We shall turn now to the third order terms in (3.4)

$$g_{\mathfrak{s}}(\xi, \eta) = \lambda \left(\xi \frac{\partial \varphi_{\mathfrak{s}}}{\partial \eta} - \eta \frac{\partial \varphi_{\mathfrak{s}}}{\partial \xi} \right) + \Phi^{(3)}(\xi, \eta)$$

$$\Phi^{(3)}(\xi, \eta) = 2\xi X_{\mathfrak{s}} + 2\eta Y_{\mathfrak{s}} = \sum_{r=-1}^{\mathfrak{s}_{\mathfrak{s}}} \Phi^{(3+r)}_{-r}(\xi, \eta) \rho^{-r}$$
(3.7)

Here $\Phi_{-r}^{(3+r)}$ are the forms of the (3 + r)-th order in ξ and η , while $\delta_3 = \max [e_{13}, e_{23}]$. We shall choose the functions $\varphi_3(\xi, \eta)$ to satisfy

$$\lambda\left(\xi\frac{\partial\varphi_{\delta}}{\partial\eta}-\eta\frac{\partial\varphi_{\delta}}{\partial\xi}\right)=-\Phi^{(3)}\left(\xi,\eta\right)+\sum_{r=s-1,\ 1,\ 3,\ldots,\ \delta_{\delta}}G_{-r}^{(3+r)}\left(\xi^{3}+\eta^{2}\right)^{\frac{1}{2}}p^{-r} \quad (3.8)$$

Using (2, 8) to compute $G_{r}^{(3+r)}$ we obtain

$$G_{-r}^{(3+r)} = \frac{1}{2\pi} \int_{0}^{2\pi} \Phi_{-r}^{(3+r)}(\xi, \eta) \Big|_{\substack{\xi = \cos \theta \\ \eta = \sin \theta}} d\theta \qquad (r = -1, 1, 3, ..., \delta_{\theta})$$
(3.9)

Putting now $G^{(m)} = \Sigma G_r^{(m+r)}$ where *m* denotes the degree of the required homogeneous function φ_m (ξ , η), we obtain the following expression for dV / dt

$$dV / dt = G^{(3)}(\xi^2 + \eta^2) \rho + \dots$$

where the terms of the order higher than third are omitted.

In the sufficiently small neighborhood of $\xi = 0$ and $\eta = 0$, the function V will be positive-definite and dV / dt will be sign definite when $G^{(3)} \neq 0$. Consequently, by the Liapunov theorem of asymptotic stability and by the first theorem on instability, the unperturbed motion of the system (3, 1) will be asymptotically stable when $G^{(3)} < 0$ and unstable when $G^{(3)} > 0$. By the reduction principle (theorem 2, 2 of [5]) the same assertion will be valid for the unperturbed motion of the initial system (1, 2), (1, 3). As the result, we have the following theorem.

Theorem 3.1. Control (1,6)-(1,8) stabilizes the system (3,1) and thus the system (1,2), (1,3), provided that the coefficients $\alpha_{pq-r}^{(j)}$ can be chosen so, that, $G^{(3)} < 0$. If $G^{(3)} > 0$ for any value of $\alpha_{pq-r}^{(j)}$, then the system (3,1) cannot be stabilized by the control (1,6)-(1,8).

We note that when $G^{(3)} \neq 0$, then only the first order terms (p + q - r = 1) in the control (1, 6) - (1, 8) need to be taken into account, since $g_3(\xi, \eta)$ is influenced only by the coefficients accompanying these terms.

Note 3.1. With a nonanalytic control (1, 6)-(1, 8) given, we can, in general, choose a function $\varphi_3(\xi, \eta)$ from the class of functions of the form (1, 8) so, that the problem of the sign definiteness of dV / dt can be resolved by considering the set of terms of the lowest order, even if it is odd-numbered.

If $G^{(3)} = 0$ under the arbitrary choice of the coefficients $a_{pq-r}^{(j)}$, then the fourth order terms in (3, 4) i.e. $g_4(\xi, \eta)$ should be considered and the above procedure used for $g_3(\xi, \eta)$, repeated. This will yield $G^{(4)}$ If $G^{(4)} < 0$, then the system (3, 1) can be stabilized by the control (1, 6)-(1, 8); if on the other hand $G^{(4)} > 0$, then stabilization is not possible.

If $G^{(4)} = 0$, we repeat the above procedure for the fifth order terms etc. If we now arrive in this manner at such $m \ (m \le N)$ that $G^{(m)} \ne 0$, then the problem on stabilization is solved as follows: if $G^{(m)} < 0$, the unperturbed motion is stabilized by the control (1, 6)-(1, 8), if $G^{(m)} > 0$ the stabilization is not possible.

The author thanks V. V. Rumiantsev for helpful advice.

BIBLIOGRAPHY

- Liapunov, A. M., General Problem of the Stability of Motion. M., Gostekhizdat, 1950.
- 2. Malkin, I.G., Theory of Stability of Motion. 2nd ed., M. "Nauka", 1966.
- 3. Gal'perin, E. A. and Krasovskii, N. N., The stabilization of stationary motions in nonlinear control systems. PMM Vol.27, №6, 1963.
- Gal'perin, E. A., On the stabilization of steady-state motions of a nonlinear control system in the critical case of a pair of pure imaginary roots. PMM Vol. 29, №6, 1965.
- Pliss, V. A., Reduction principle in the theory of stability of motion. Izv. Akad. Nauk SSSR, ser. matem., Vol. 28, №6, 1964.

Translated by L.K.